вва 75657

INTERACTION OF N-ETHYLMALEIMIDE AND Ca²⁺ WITH HUMAN ERYTHROCYTE MEMBRANE ATPase

RHODA BLOSTEIN AND VIVIEN K. BURT

Division of Hematology, McGill University Medical Clinic, Royal Victoria Hospital, and the Department of Experimental Medicine, McGill University, Montreal (Canada) (Received February 1st, 1971)

SUMMARY

Human erythrocyte membranes were treated with N-ethylmaleimide and then assayed for cation-sensitive components of ATPase activity. Inhibition of Na⁺-activated ATPase and (Na⁺-K⁺)-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3), observed following N-ethylmaleimide treatment, was abolished when ethylene glycol bis-(β -aminoethyl)-N,N-tetraacetate (EGTA) was included in the assay system.

N-Ethylmaleimide pretreatment reduced Mg²⁺-activated ATPase activity both in the absence and presence of EGTA. The Mg²⁺-dependent components of [14 C]ADP-ATP exchange and membrane phosphorylation using [γ - 32 P]ATP were reduced following N-ethylmaleimide pretreatment whereas the Na⁺-stimulated components of these activities were unaffected.

At very low ATP concentration, chelation of endogenous Ca^{2+} increases the sensitivity of the ATPase system to stimulation by low concentrations of Na⁺. In contrast a Ca^{2+} -requirement at a Na⁺-dependent step of (Na⁺ \leftrightarrow K⁺)-activated ATPase reaction sequence was observed at higher ATP concentration. These results suggest both inhibitory and activating effects of Ca^{2+} on alkali cation-sensitive ATPase.

INTRODUCTION

Human erythrocyte membrane ATPase activity has been shown to consist of at least two components^{1,2}. One component requires Mg²⁺, is not affected by cardiac glycosides and can be stimulated by low concentrations of Ca²⁺ (ref. 2). The other component is a Mg²⁺-dependent (Na⁺–K⁺)-activated ATPase activity (ATP phosphohydrolase, EC 3.6.1.3) which is inhibited by cardiac glycosides and small amounts of Ca²⁺ (refs. 1–5).

Both components of ATPase activity are inhibited by sulfhydryl reagents such as N-ethylmaleimide^{6–8}. With some membrane preparations, (Na⁺–K⁺)-ATPase is inhibited more than Mg²⁺-ATPase activity^{7–11}; in other preparations, such as ox brain⁶, the reverse is true. During the course of experiments designed to test effects

Abbreviations: EGTA, ethylene glycol bis- $(\beta$ -aminoethyl)-N,N-tetraacetate; DTNB, dithionitrobenzoic acid; BAL, 2,3-dimercaptopropanol.

of N-ethylmaleimide and Ca^{2+} on cation-sensitive components of ATP hydrolysis, we observed that pretreatment of human erythrocyte membranes with N-ethylmaleimide inhibited (Na⁺–K⁺)-ATPase, only in the presence of small amounts of Ca^{2+} . In addition to this inhibition by Ca^{2+} , a Ca^{2+} requirement at some step(s) of the reaction sequence was also observed.

MATERIALS AND METHODS

Erythrocyte membranes were prepared from fresh, human erythrocytes and assays were carried out as described previously^{12,13}. Unless indicated otherwise, 4 vol. membranes were incubated with 1 vol. of 5 mM N-ethylmaleimide in o.o1 M Tris–HCl buffer (pH 7.4–7.6) (plus N-ethylmaleimide) or o.o1 M Tris–HCl buffer (pH 7.4–7.6) (control) for 30 min at 37°. Following this preincubation, assays were started by adding an aliquot of the membrane suspension to the assay medium as described previously¹². For assay periods longer than 2 min, mercaptoethanol was included in the medium, at a concentration 10 times the final N-ethylmaleimide concentration. Procedures for measuring ATP hydrolysis (32 P₁ released from [γ - 32 P]-ATP), labeling with [γ - 32 P]ATP and measuring [14 C]ADP–ATP exchange activity were determined as described^{12,13}. All data presented are typical of three or more experiments.

The rate of ATP hydrolysis measured in the absence of added NaCl or KCl is referred to as Mg²⁺-ATPase, the increment in rate effected by the addition of 50 mM NaCl, as Na⁺-ATPase, and the increment in rate effected by the addition of 50 mM NaCl and 10 mM KCl, as (Na⁺-K⁺)-ATPase

RESULTS

Relationship between Ca²⁺ and N-ethylmaleimide inhibition

Erythrocyte membranes were preincubated with N-ethylmaleimide as indicated above and then the ATPase activity was assayed at two ATP concentrations to observe the following: (i) Maximal stimulation by Na+ referred to as Na+-ATPase using 2 $\mu\rm M$ ATP. At this low ATP concentration, K+ addition does not further stimulate the activity observed with Mg²+ and Na+ (ref. 13). (ii) Maximal stimulation with both Na+ and K+ present, referred to as (Na+-K+)-ATPase, using 40 $\mu\rm M$ ATP¹³.

Following 30 min preincubation with N-ethylmaleimide (Fig. 1, clear bars), $\mathrm{Mg^{2+}\text{-}ATPase}$ was decreased more than either Na⁺-ATPase (70 % compared to 51 %) or (Na⁺-K⁺)-ATPase (72 % compared to 44 %). Following N-ethylmaleimide pretreatment, but with 0.1 mM ethylene glycol bis-(β -aminoethyl)-N,N-tetraacetate (EGTA) included in the assay medium (Fig. 1, shaded bars), $\mathrm{Mg^{2+}\text{-}ATPase}$ was decreased but Na⁺-ATPase or (Na⁺-K⁺)-ATPase activities were no longer inhibited.

Since N-ethylmaleimide pretreatment inhibited the alkali cation-sensitive ATPase activity measured in the absence but not presence of EGTA, the question arose whether N-ethylmaleimide sensitizes the system to inhibition by endogenous $\mathrm{Ca^{2+}}$ which is chelated by EGTA. Experiments were carried out at 2 $\mu\mathrm{M}$ ATP to ascertain whether (1) the EGTA effects were due to chelation of $\mathrm{Ca^{2+}}$ and (2) N-ethylmaleimide effects were due to reaction with membrane sulfhydryl groups. As shown in Fig. 2, with a constant concentration of 0.1 mM EGTA and an increasing amount

of added CaCl₂, Na⁺-ATPase in the control samples was decreased 35 % only when an excess of 20 μ M CaCl₂ was added. Following N-ethylmaleimide pretreatment 50 % inhibition was observed with equimolar EGTA and CaCl₂ and hence micromolar

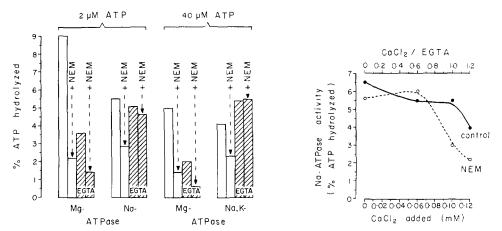


Fig. 1. Membranes were preincubated for 30 min at 37 without or with 1 mM N-ethylmaleimide (NEM) as indicated. At 2 μ M ATP assays were carried out for 10 sec at 37 in a final volume of 0.5 ml containing 0.35 ml membranes (3.85 mg protein per ml) 0.002 mM [γ -³²P]ATP (875·10³ counts/min per 0.5 ml volume) 0.012 mM MgCl₂ and 40 mM Tris–HCl buffer (pH 7.4). At 40 μ M ATP, assays were carried out for 5 min at 37 in a final volume of 0.25 ml containing 0.1 ml membranes (0.68 mg/ml) 0.04 mM [γ -³²P]ATP (59·10³ counts/min per 0.25 ml volume) 0.04 mM MgCl₂ and 8 mM mercaptoethanol. 0.1 mM Tris–EGTA buffer (pH 7.4), was absent (clear bars) or present (shaded bars) in the incubation medium. Na⁺-ATPase and (Na⁺-K⁺)-ATPase activity refer to the increment in activity obtained in the presence of 50 mM NaCl or 50 mM NaCl ρ lus to mM KCl, respectively, after subtraction of the activity observed without NaCl ("Mg²-ATPase").

Fig. 2. Dependence of Na $^{+}$ -ATPase on Ca²⁺ concentration. Incubation was carried out as described in Fig. 1 (2 μ M [γ -³²P]ATP), except that assays were for 2 min in a final volume of 0.25 ml containing 0.1 ml membranes (0.72 mg/ml), 8 mM mercaptoethanol, 0.1 mM Tris-EGTA buffer and CaCl₂ as indicated. NEM stands for N-ethylmaleimide.

amounts of free Ca²⁺ (ref. 14); 70 % inhibition was observed with 20 μ M excess CaCl₂ (0.12 mM CaCl₂ added). With a CaCl₂/EGTA ratio of 0.6, and hence a free Ca²⁺ concentration approx. 0.1 μ M at pH 7.4 (ref. 14), no inhibition was observed following N-ethylmaleimide treatment.

The data in Fig. 3 support the conclusion that the effects of N-ethylmaleimide are due to reaction with sulfhydryl groups. When the membranes were treated with the sulfhydryl reagent dithionitrobenzoic acid (DTNB), the pattern of inhibition was similar to that observed with N-ethylmaleimide i.e. Na⁺-ATPase activity was completely inhibited in the control (EGTA omitted); with o.r mM EGTA in the assay, inhibition was reduced to 48%.

³²P incorporation and [¹⁴C]ADP-ATP exchange

The effects of N-ethylmaleimide on the transfer of ^{32}P from $[\gamma^{-32}P]ATP$ to membrane components at 37° and on the $[^{14}C]ADP$ -ATP exchange activity at o° were tested. The Na⁺-stimulated components of these activities have been shown to participate in Na⁺-ATPase activity of erythrocyte membranes^{12, 13}. The results in

Table I indicate that N-ethylmaleimide treatment resulted in a marked decrease in both the level of ³²P bound and the exchange activity observed without added Na⁺. In contrast, Na⁺-stimulated phosphorylation and exchange were not significantly affected. Thus N-ethylmaleimide pretreatment resulted in an increased ratio of Na⁺-dependent/Mg²⁺-dependent labeling and exchange. Na⁺-stimulated phosphorylation was decreased in the presence of K⁺, both in the controls and following N-ethylmaleimide pretreatment.

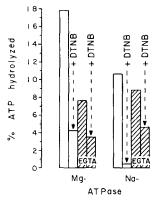


Fig. 3. Membranes were preincubated for 30 min at 37° without or with 1 mM DTNB as indicated. Assays were carried out for 2 min at 37° in a final volume of 0.25 ml containing 0.1 ml membranes (1.41 mg/ml), 0.002 mM [γ -32P]ATP, 0.012 mM MgCl₂ and 50 mM NaCl as required, as described in Fig. 1.

TABLE I

effects of N-ethylmaleimide treatment on membrane phosphorylation and $[^{14}C]ADP-ATP$ exchange

For phosphorylation determinations, membranes 0.35 ml (3.6 mg membrane protein per ml), were initially incubated for 30 min at 37° without or with 1 mM N-ethylmaleimide (NEM) as described in MATERIALS AND METHODS and were then incubated for 10 sec at 37° in a final volume of 0.5 ml containing 0.002 mM [γ -32P]ATP (1700·10³ counts/min per 0.5 ml volume), 0.012 mM MgCl₂ and 30 mM Tris–HCl buffer (pH 7.4). NaCl (50 mM), KCl (10 mM) and Tris–EGTA buffer (pH 7.4) (0.1 mM) were included as indicated. For [14 C]ADP–ATP exchange, membranes, 0.1 ml (2.0 mg protein per ml), were incubated for 1 h at 0° in a final volume of 0.25 ml containing 1 μ M [14 C]ADP (0.025 μ C per 0.25 ml volume) and 2 μ M ATP, under the conditions described previously¹³.

Cations added	Membrane phosphorylation (pmoles ³² P bound per mg)		
	Control	NEM-treated	
(a) Mg ²	0.72	0.23	
(b) $Mg^{2-} + Na^+$	1.49 0.93		
(c) Mg ²⁺ , Na ⁺ , K ⁺	0.67 0.77	0.30 0.70	
Na+-dependent phosphorylation (b -a)			
$ m K^{+}$ -dependent dephosphorylation (c -b)	0.82	0.63	
	[14C]ADP-ATP exchange (pmoles [14C]ATP formed per mg per h)		
(d) Mg ^{2.+}	82	44	
(e) $Mg^{2+} + Na^{+}$	184	157	
Na+-dependent exchange (e -d)	102	113	

TABLE II

EFFECTS OF EGTA

For measurements of ATP hydrolysis at 40 μ M ATP, 0.1 ml membranes (0.67 mg protein per ml) were incubated for 5 min in a final volume of 0.25 ml containing 40 μ M [γ -³²P]ATP (γ 9 · 10³ counts/min per 0.25 ml volume) 40 μ M MgCl₂, 40 mM Tris–HCl buffer (pH γ -4), and NaCl and KCl as indicated. For measurements of ATP hydrolysis at 2 μ M ATP, 0.1 ml membranes (0.96 mg/ml) were incubated for 2 min in a final volume of 0.25 ml containing 2 μ M [γ -³²P]ATP (140 · 10³ counts/min per 0.25 ml volume) 25 μ M MgCl₂, 40 mM Tris–HCl buffer (pH γ -4), and NaCl as indicated. Measurements of phosphorylation were carried out as described in Table 1.

ATP conen. (µM)	Quantity measured	Additions	ATP hydrolyzed (°0)	
			-EGTA	EGT.4
40	Mg ²⁺ -ATPase	None	8.1	4.4
	Na '-ATPase (Na '-K ')-ATPase	50 mM NaCl 50 mM NaCl	3.7	0.2
	,	- 10 mM KCl	7.7	6.8
2	Mg ²⁺ -ATPase	None	19.6	7.1
	Na+-ATPase	o.5 mM NaCl	0.4	6.7
		5.0 mM NaCl	5. I	8.5
		50 mM NaCl	12.8	11.9
			³² P bound (pmoles/mg)	
			EGTA	+EGTA
2	${ m Mg^{2+}}$ -dependent phosphorylation (${ m Mg^{2-}+Na^+}$)-dependent phosphorylation	None	0.67	0.76
		50 mM NaCl	1.46	1.34

Effects of EGTA

During the course of these studies, we observed that EGTA addition did not change Na⁺-ATPase activity measured at 2 μ M ATP and 50 mM NaCl. However, EGTA had marked effects on (r) the Na⁺ concentration required to stimulate ATP hydrolysis measured at very low concentrations of ATP, e.g. 2 μ M, and on (2) the relative sensitivity of ATPase to activation by Na⁺ alone versus Na⁺ plus K⁺ measured at higher ATP concentrations, e.g. 40 μ M. Typical results are shown in Table II; results were similar whether 0.1 mM EGTA was omitted or 0.1 mM EGTA plus 0.1 mM CaCl₂ were added. As indicated, at 2 μ M ATP the NaCl concentration required to induce approximately half-maximal Na⁺-ATPase activity was reduced approx. 10-fold with 0.1 mM EGTA present. At higher ATP concentrations (40 μ M), the Na⁺-ATPase, but not (Na⁺-K⁺)-ATPase was decreased markedly (95%) by EGTA. This suggests that chelation of endogenous Ca²⁺ by EGTA probably alters the relative sensitivity of the ATPase to activation by Na⁺ alone versus Na⁺ plus K⁺.

As shown in Table II, EGTA did not affect either Mg²⁺- or Mg²⁺- plus Na⁺-dependent phosphorylation of membranes using 2 μ M [γ -³²P]ATP.

DISCUSSION

 $Mg^{2\pm}$ -dependent (Na⁺-K⁺)-ATPase appears to be a multistage reaction sequence consisting of (1) Na⁺-stimulated phosphorylation of a membrane component E_1 (refs.

12, 13, 15-18), and Na⁺-stimulated [¹⁴C]ADP-ATP exchange^{19, 20}, (2) Mg²⁺-activated transformation of phosphorylated intermediate $(E_1P \rightleftharpoons E_2P)^{9,21}$, (3) K⁺-stimulated dephosphorylation $(E_2P \to E_2)^{22-26}$ and, (presumably) (4) reversion to the original form $(E_2 \rightleftharpoons E_1)^{21}$. Inhibition of Na⁺-stimulated ATPase activity, associated with increased Na+-sensitive [14C]ADP-ATP exchange activity and loss of sensitivity to K+-stimulated hydrolysis of phosphorylated intermediate has been effected by treating membrane preparations with N-ethylmaleimide⁷⁻⁹ or oligomycin^{8,27,28}. Similar results were obtained with human red cell membranes incubated with oligomycin¹³. These results suggested that the site of inhibition was at a step following initial phosphorylation of intermediate, e.g. $E_1P \rightleftharpoons E_2P$. In the present study N-ethylmaleimide did not increase exchange activity or block K+-stimulated decrease in bound 32P. It is possible, therefore, that with the present conditions of low ATP and Mg²⁺ concentration used, the partial inhibition by N-ethylmaleimide (50-70%) was mainly at another site, e.g. transformation of unphosphorylated form of intermediate, i.e. $E_2 \rightleftharpoons E_1$, as discussed by Siegel and Albers²¹ for 2,3-dimercaptopropanol (BAL)arsenite effects. Our data suggest that the inhibition may not be due directly to N-ethylmaleimide but to Ca^{2+} , i.e. the N-ethylmaleimide-treated system may be more sensitive to Ca²⁺ inhibition than the untreated system.

In our experiments, blockage (alkylation) of sulfhydryl groups would have occurred during N-ethylmaleimide pretreatment and should have been negligible in the subsequent assay. Either the assay period was short (< 2 min) compared to the pretreatment period (30 min) or excess mercaptoethanol was present during the assay. Thus the Ca²⁺ effects do not reflect modification of the reaction between sulfhydryl reagent and membrane protein, although such effects have been described²⁹. Under the conditions of our experiments blockage of sulfhydryl groups appeared to increase the sensitivity of the enzyme system to inhibition by Ca²⁺. In experiments with ox brain preparations, Skou and Hilberg³⁰ described ATP protection against inhibition by sulfhydryl reagents; it is possible that their observations are related also to Ca²⁺ binding by ATP.

Competition between Ca²⁺ and Na⁺ has been described extensively in studies with excitable tissues. Although Epstein and Whittam³¹ provided kinetic evidence indicating that Ca²⁺ inhibition of (Na⁺-K⁺)-ATPase is due to CaATPacting as a competitive inhibitor of MgATP and probably not due to Ca²⁺-Na⁺ competition, other studies have favoured the latter possibility³²⁻³⁴. More recently³⁵, Na⁺ stimulation of Ca²⁺ efflux from subcellular vesicles has been shown to be blocked by low concentrations of certain sulfhydryl reagents, including N-ethylmaleimide. The present observations may be explained similarly. Thus, alkylation of certain sulfhydryl groups may decrease the ability of Na⁺ to displace Ca²⁺ from 'Na⁺ sites' resulting in decreased Na⁺-ATPase activity. Moreover, chelation of Ca²⁺ by EGTA markedly increases the sensitivity of ATPase to stimulation by low concentrations of Na⁺, as shown in Table II.

The present study provides evidence for both inhibitory and activating effects of Ca²⁺ on the transport ATPase system. With changing (increasing) ATP concentration, the ATPase system appears to change from being Na⁺-dependent to Na⁺- plus K⁺-dependent¹³. This change probably reflects the activity of different reaction steps which are evident when they become rate-limiting as the ATP concentration is increased. At 40 μ M ATP, both Na⁺ and Na⁺ plus K⁺ activation are observed. At this

concentration and in contrast to results at 2 μ M ATP, removal of endogenous Ca²⁺ reduced markedly the Na+-sensitive component without affecting the Na+- plus K+-stimulated component. This observation suggests also that the Na+-stimulated component observed at 40 μ M ATP reflects the activity of a step distinct from, e.g. subsequent to, the Na⁺-stimulated component observed at 2 μ M ATP.

ACKNOWLEDGMENTS

We wish to thank Miss Mee Lee and Mr. E. S. Whittington for excellent technical assistance. This investigation was supported by a Research Grant from the Medical Research Council of Canada, of which R.B. is a Scholar.

REFERENCES

- 1 R. L. Post, C. R. Merritt, C. R. Kinsolving and C. D. Albright, J. Biol. Chem., 235 (1960)
- 2 E. T. DUNHAM AND I. M. GLYNN, f. Physiol. London, 156 (1961) 274.
- 3 J. F. HOFFMAN, Circulation, 26 (1962) 1201.
- 4 R. WHITTAM AND D. M. BLOND, Biochem. J., 92 (1964) 147.
- 5 K. P. WHEELER AND R. WHITTAM, Biochem. J., 93 (1964) 349.
- 6 J. C. Skou, Biochim. Biophys. Acta, 42 (1960) 6.
- J. C. Skou, Biochim. Biophys. Acta, 23 (1957) 394-8
 J. C. Skou, Physiol. Rev., 45 (1965) 596.
- 9 R. L. POST, S. KUME, T. TOBIN, B. ORCUTT AND A. K. SEN, Membrane Proteins, Little, Brown, Boston, 1969, p. 306.
- 10 S. FAHN, G. J. KOVAL AND R. W. ALBERS, J. Biol. Chem., 243 (1968) 1993.
- 11 D. C. Tosteson, Ann. N.Y. Acad. Sci., 137 (1966) 577.
- 12 R. BLOSTEIN, J. Biol. Chem., 243 (1968) 1957.
- 13 R. BLOSTEIN, J. Biol. Chem., 245 (1970) 270.
 14 H. PORTZEHL, P. C. CALDWELL AND J. C. RUEGG, Biochim. Biophys. Acta, 79 (1964) 581.
- 15 R. L. POST, A. K. SEN AND A. S. ROSENTHAL, J. Biol. Chem., 240 (1965) 1437.
- 16 R. W. Albers, S. Fahn and G. J. Koval, Proc. Natl. Acad. Sci. U.S., 50 (1963) 474.
- 17 L. E. HOKIN, P. S. SASTRY, P. R. GALSWORTHY AND A. YODA, Proc. Natl. Acad. Sci., U.S., 54 (1965) 177.
- 18 K. Nagano, T. Kanazawa, N. Mizuno, Y. Tashima, T. Nakao and M. Nakao, Biochem-Biophys. Res. Commun., 19 (1965) 759.
- 19 S. FAHN, G. J. KOVAL AND R. W. ALBERS, J. Biol. Chem., 241 (1966) 1882.
- 20 S. FAHN, M. R. HURLEY, G. J. KOVAL AND R. W. ALBERS, J. Biol. Chem., 241 (1966) 1890.
- 21 G. J. SIEGEL AND R. W. Albers, J. Biol. Chem., 242 (1968) 4972.
 22 J. D. JUDAH, K. AHMED AND A. E. M. McLean, Biochim. Biophys. Acta, 65 (1962) 472.
- 23 R. W. Albers and G. J. Koval, J. Biol. Chem., 241 (1966) 1896.
- 24 H. BADER AND A. K. SEN, Biochim. Biophys. Acta, 118 (1966) 116.
- 25 K. NAGAI AND H. YOSHIDA, Biochim. Biophys. Acta, 128 (1966) 410.
- 26 Y. ISRAEL AND E. TITUS, Biochim. Biophys. Acta, 139 (1967) 450.
- 27 W. L. STAHL, Neurochemistry, 15 (1968) 1511.
- 28 C. E. Inturrisi and E. Titus, Mol. Pharmacol., 4 (1968) 591.
- 29 H. BADER, A. B. WILKES AND D. H. JEAN, Biochim. Biophys. Acta, 198 (1970) 583.
- 30 J. C. SKOU AND C. HILBERG, Biochim. Biophys. Acta, 110 (1965) 359.
- 31 F. H. Epstein and R. Whittam, Biochem. J., 99 (1966) 232.
- 32 P. F. Baker, M. P. Blaustein, A. L. Hodgkin and R. A. Steinhardt, J. Physiol. London 192 (1967) 43P.
- 33 P. F. BAKER, A. L. HODGKIN AND R. A. STEINHARDT, J. Physiol. London, 200 (1969) 431.
- 34 M. P. BLAUSTEIN AND A. L. HODGKIN, J. Physiol. London, 200 (1969) 497.
- 35 J. D. Robinson, J. Neurochem., 16 (1969) 587.